Ultrahigh-dimensional sufficient dimension reduction with measurement error in covariates

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On sufficient dimension reduction for proportional censorship model with covariates

The requirement of constant censoring parameter β in Koziol–Green (KG) model is too restrictive. When covariates are present, the conditional KG model (Veraverbekea and Cadarso-Suárez, 2000) which allows β to be dependent on the covariates is more realistic. In this paper, using sufficient dimension reduction methods, we provide a model-free diagnostic tool to test if β is a function of the cov...

متن کامل

Sufficient Dimension Reduction Summaries

Observational studies assessing causal or non-causal relationships between an explanatory measure and an outcome can be complicated by hosts of confounding measures. Large numbers of confounders can lead to several biases in conventional regression based estimation. Inference is more easily conducted if we reduce the number of confounders to a more manageable number. We discuss use of sufficien...

متن کامل

Tensor sufficient dimension reduction.

Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we pro...

متن کامل

Feature Selection for Varying Coefficient Models With Ultrahigh Dimensional Covariates.

This paper is concerned with feature screening and variable selection for varying coefficient models with ultrahigh dimensional covariates. We propose a new feature screening procedure for these models based on conditional correlation coefficient. We systematically study the theoretical properties of the proposed procedure, and establish their sure screening property and the ranking consistency...

متن کامل

Sufficient Dimension Reduction With Missing Predictors

In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2021

ISSN: 0167-7152

DOI: 10.1016/j.spl.2020.108931